In-class Exercise 9

A short description of the post.

Joyce Tseng https://www.linkedin.com/in/joyce-tseng-a7115a1aa/ (School of Computing and Information Systems (SMU))https://scis.smu.edu.sg/master-it-business
2022-06-18

Getting Start

Install Packages

packages = c('tidyverse', 'lubridate', 'ggthemes', 'reactable', 'reactablefmtr',
             'gt', 'gtExtras')
for(p in packages){
  if(!require(p, character.only = T)){
    install.packages(p)
  }
  library(p, character.only = T)
}

Import Data

coffeechain <- read_rds("CoffeeChain.rds")

Data Wrangling and Visualization

Bullet Chart for Coffee Sales - ggplot2

Preparing the Data

product <- coffeechain %>%
  group_by(`Product`) %>%
  summarise(`target` = sum(`Budget Sales`),
            `current` = sum(`Sales`)) %>%
  ungroup()
ggplot(product, aes(Product, current)) + 
  geom_col(aes(Product, max(target) * 1.01),
           fill="grey85", width=0.85) +
  geom_col(aes(Product, target * 0.75),
           fill="grey60", width=0.85) +
  geom_col(aes(Product, target * 0.5),
           fill="grey50", width=0.85) +
  geom_col(aes(Product, current), 
           width=0.35,
           fill = "black") + 
  geom_errorbar(aes(y = target,
                    x = Product, 
                    ymin = target,
                    ymax= target), 
                width = .4,
                colour = "red",
                size = 1) +
  coord_flip()

Bullet Chart for Coffee Sales - gt and gtExtras

product %>%
  gt::gt() %>%
  gt_plt_bullet(column = current, 
              target = target, 
              width = 60,
              palette = c("lightblue", 
                          "black")) %>%
  gt_theme_538()
Product current
Amaretto
Caffe Latte
Caffe Mocha
Chamomile
Colombian
Darjeeling
Decaf Espresso
Decaf Irish Cream
Earl Grey
Green Tea
Lemon
Mint
Regular Espresso

Plotting Sparklines for Coffee Sales - ggplot2

Preparing the Data

sales_report <- coffeechain %>%
  filter(Date >= "2013-01-01") %>%
  mutate(Month = month(Date)) %>%
  group_by(Month, Product) %>%
  summarise(Sales = sum(Sales)) %>%
  ungroup() %>%
  select(Month, Product, Sales)
mins <- group_by(sales_report, Product) %>% 
  slice(which.min(Sales))
maxs <- group_by(sales_report, Product) %>% 
  slice(which.max(Sales))
ends <- group_by(sales_report, Product) %>% 
  filter(Month == max(Month))
quarts <- sales_report %>%
  group_by(Product) %>%
  summarise(quart1 = quantile(Sales, 
                              0.25),
            quart2 = quantile(Sales, 
                              0.75)) %>%
  right_join(sales_report)
ggplot(sales_report, aes(x=Month, y=Sales)) + 
  facet_grid(Product ~ ., scales = "free_y") + 
  geom_ribbon(data = quarts, aes(ymin = quart1, max = quart2), 
              fill = 'grey90') +
  geom_line(size=0.3) +
  geom_point(data = mins, col = 'red') +
  geom_point(data = maxs, col = 'blue') +
  geom_text(data = mins, aes(label = Sales), vjust = -1) +
  geom_text(data = maxs, aes(label = Sales), vjust = 2.5) +
  geom_text(data = ends, aes(label = Sales), hjust = 0, nudge_x = 0.5) +
  geom_text(data = ends, aes(label = Product), hjust = 0, nudge_x = 1) +
  expand_limits(x = max(sales_report$Month) + 
                  (0.25 * (max(sales_report$Month) - min(sales_report$Month)))) +
  scale_x_continuous(breaks = seq(1, 12, 1)) +
  scale_y_continuous(expand = c(0.1, 0)) +
  theme_tufte(base_size = 3, base_family = "Helvetica") +
  theme(axis.title=element_blank(), axis.text.y = element_blank(), 
        axis.ticks = element_blank(), strip.text = element_blank())

Plotting Sparklines for Coffee Sales - gt and gtExtras

report <- coffeechain %>%
  mutate(Year = year(Date)) %>%
  filter(Year == "2013") %>%
  mutate (Month = month(Date, 
                        label = TRUE, 
                        abbr = TRUE)) %>%
  group_by(Product, Month) %>%
  summarise(Sales = sum(Sales)) %>%
  ungroup()
report %>%
  group_by(Product) %>%
  summarize('Monthly Sales' = list(Sales), 
            .groups = "drop")
# A tibble: 13 × 2
   Product           `Monthly Sales`
   <chr>             <list>         
 1 Amaretto          <dbl [12]>     
 2 Caffe Latte       <dbl [12]>     
 3 Caffe Mocha       <dbl [12]>     
 4 Chamomile         <dbl [12]>     
 5 Colombian         <dbl [12]>     
 6 Darjeeling        <dbl [12]>     
 7 Decaf Espresso    <dbl [12]>     
 8 Decaf Irish Cream <dbl [12]>     
 9 Earl Grey         <dbl [12]>     
10 Green Tea         <dbl [12]>     
11 Lemon             <dbl [12]>     
12 Mint              <dbl [12]>     
13 Regular Espresso  <dbl [12]>     
report %>% 
  group_by(Product) %>% 
  summarise("Min" = min(Sales, na.rm = T),
            "Max" = max(Sales, na.rm = T),
            "Average" = mean(Sales, na.rm = T)
            ) %>%
  gt() %>%
  fmt_number(columns = 4,
    decimals = 2)
Product Min Max Average
Amaretto 1016 1210 1,119.00
Caffe Latte 1398 1653 1,528.33
Caffe Mocha 3322 3828 3,613.92
Chamomile 2967 3395 3,217.42
Colombian 5132 5961 5,457.25
Darjeeling 2926 3281 3,112.67
Decaf Espresso 3181 3493 3,326.83
Decaf Irish Cream 2463 2901 2,648.25
Earl Grey 2730 3005 2,841.83
Green Tea 1339 1476 1,398.75
Lemon 3851 4418 4,080.83
Mint 1388 1669 1,519.17
Regular Espresso 890 1218 1,023.42
spark <- report %>%
  group_by(Product) %>%
  summarize('Monthly Sales' = list(Sales), 
            .groups = "drop")
sales <- report %>% 
  group_by(Product) %>% 
  summarise("Min" = min(Sales, na.rm = T),
            "Max" = max(Sales, na.rm = T),
            "Average" = mean(Sales, na.rm = T))
sales_data = left_join(sales, spark)
sales_data %>%
  gt() %>%
  gt_plt_sparkline('Monthly Sales')
Product Min Max Average Monthly Sales
Amaretto 1016 1210 1119.000 1.2K
Caffe Latte 1398 1653 1528.333 1.5K
Caffe Mocha 3322 3828 3613.917 3.7K
Chamomile 2967 3395 3217.417 3.3K
Colombian 5132 5961 5457.250 5.5K
Darjeeling 2926 3281 3112.667 3.0K
Decaf Espresso 3181 3493 3326.833 3.2K
Decaf Irish Cream 2463 2901 2648.250 2.7K
Earl Grey 2730 3005 2841.833 3.0K
Green Tea 1339 1476 1398.750 1.5K
Lemon 3851 4418 4080.833 4.4K
Mint 1388 1669 1519.167 1.5K
Regular Espresso 890 1218 1023.417 1.1K

Combination of bullet chart and sparklines

bullet <- coffeechain %>%
  filter(Date >= "2013-01-01") %>%
  group_by(`Product`) %>%
  summarise(`Target` = sum(`Budget Sales`),
            `Actual` = sum(`Sales`)) %>%
  ungroup()
sales_data = sales_data %>%
  left_join(bullet)
sales_data %>%
  gt() %>%
  gt_plt_sparkline('Monthly Sales') %>%
  gt_plt_bullet(column = Actual, 
                target = Target, 
                width = 28,
                palette = c("lightblue", 
                          "black")) %>%
  gt_theme_538()
Product Min Max Average Monthly Sales Actual
Amaretto 1016 1210 1119.000 1.2K
Caffe Latte 1398 1653 1528.333 1.5K
Caffe Mocha 3322 3828 3613.917 3.7K
Chamomile 2967 3395 3217.417 3.3K
Colombian 5132 5961 5457.250 5.5K
Darjeeling 2926 3281 3112.667 3.0K
Decaf Espresso 3181 3493 3326.833 3.2K
Decaf Irish Cream 2463 2901 2648.250 2.7K
Earl Grey 2730 3005 2841.833 3.0K
Green Tea 1339 1476 1398.750 1.5K
Lemon 3851 4418 4080.833 4.4K
Mint 1388 1669 1519.167 1.5K
Regular Espresso 890 1218 1023.417 1.1K